Биология. Том 2. - Ярыгин В.Н.

Глава 15. Антропогенез и дальнейшая эволюция человека

15.1. Место человека в системе животного мира

Неограниченный прогресс в эволюции живой материи проявился в возникновении человека как биосоциального существа. Появление человека с его целенаправленной трудовой деятельностью качественно изменило облик планеты Земля и определило новое направление эволюции природы в целом. Будучи биологическим видом, человек обладает при этом социальной сущностью. Социальная сущность человека определяет его современное состояние и прогнозирует будущее. Биологическое в нем при этом становится его наследством, поэтому эволюция человека на современном этапе идет не столько по биологическим законам, сколько по законам развития человеческого общества. Биологическая эволюция представляет собой биологическую форму движения материи, а эволюция общества - социальную. Естественно, что социальная форма движения материи возникла лишь с появлением человека. Поэтому изучение вопросов антропогенеза - это не только биологическая, но и философская проблема.

Возникновение человека как социального существа происходило, с одной стороны, в связи с его принадлежностью к отряду приматов, обладающих большим количеством прогрессивных черт организации, а с другой - с совпадением во времени нескольких событий, связанных:

• с особенностями географического расселения предковых форм;

• с геологическими процессами;

• с адекватными им изменениями климатических условий на Земле в целом и в зонах их исходного обитания.

Существует мнение, что если бы в мезозойской эре не вымерли динозавры, то пресмыкающиеся до сих пор оставались бы самой прогрессивной группой животных. И не исключено, что наиболее эволюционно продвинутые некрупные хищные ящеры стенихозавры с относительным объемом головного мозга, превышающим этот показатель у всех остальных известных современных и вымерших пресмыкающихся в 6 раз, могли бы дать начало появлению разумных существ, отличных от человека.

Человек как биологический вид относится к отряду приматов (рис. 15.1).

Рис. 15.1. Место человека в отряде Приматы и приблизительное время дивергенции приматов на основные систематические группы

15.2. Методы изучения происхождения и эволюции человека

Разные этапы эволюции человека требуют и разных подходов к их изучению. Происхождение приматов и их адаптивная радиация - чисто биологическая эволюция. Ее изучают в первую очередь методами палеонтологии и сравнительной морфологии. Так как возникновение рода Homo сопровождается появлением элементов материальной культуры, а к действию элементарных эволюционных факторов подключается действие социального фактора, этот этап антропогенеза изучают также методами археологии. В дальнейшей эволюции рода Homo доминируют социальные факторы, поэтому методологические подходы к изучению разных этапов антропогенеза различны.

Изучение первых этапов эволюции человека сталкивается с необходимостью датировки палеонтологического материала и элементов материальной культуры. Для определения абсолютного возраста ископаемых останков человека и его предков широко используют физические методы, в частности, радиометрические. С помощью масс- спектрометрии определяют изотопный состав изучаемого объекта и по соотношению элементов с учетом периода полураспада входящих в его состав радиоактивных изотопов выявляют возраст образца. Ископаемый костный материал содержит в своем составе минеральные компоненты и белок коллаген, разрушающийся чрезвычайно медленно. На этом основан коллагеновый метод абсолютной датировки ископаемых остатков: чем меньше коллагена содержится в образце, тем более велика его древность.

В антропологии при изучении происхождения и эволюции человека широко применяют также методы иммунологии, биохимии, молекулярной биологии и цитогенетики. В связи с огромной важностью этих методов остановимся на них подробнее. Для определения прямого родства организмов друг с другом используют иммунологический метод, основанный на изучении иммунных реакций антиген-антитело. Его можно применять для изучения степени родства не только современного человека с человекообразными обезьянами, но и ныне живущих видов с ископаемыми. Для этого следовые количества белка, извлекаемые из костей ископаемых форм, используют для получения антител, которые и применяют в иммунных реакциях с белками современных видов. Из современных человекообразных обезьян к человеку иммунологически наиболее близок шимпанзе, наиболее далеко от человека отстоит орангутан. Иммунологическим методом было обнаружено, что белки рамапитека, человекообразной обезьяны Южной Азии (абсолютный возраст 13 млн лет), более сходны с белками орангутана, чем человека и шимпанзе. Эти данные вместе с результатами морфологических и палеонтологических сопоставлений заставили отказаться от представления о том, что рамапитек является прямым предком человека, и связать его с эволюционной линией орангутана. Из этого следует, что разделение человеческой линии эволюции с африканскими человекообразными обезьянами произошло значительно позже, чем 13 млн лет назад.

Биохимическим методом определяют аминокислотный состав белков, например, гемоглобина, у организмов, находящихся в разной степени родства друг с другом. Естественно, что у близкородственных организмов гомологичные белки имеют большее сходство в аминокислотных последовательностях, чем у организмов, находящихся в более отдаленном родстве (рис. 15.2).

Молекулярно-биологический метод основан на сопоставлении нуклеотидных последовательностей молекул ДНК организмов разной степени родства. Мера сходства двух таксонов соответствует мере их родства. Поэтому организмы, имевшие общего предка в недалеком прошлом, будут более сходными друг с другом, чем имевшие его очень давно. В антропологии чаще используют митохондриальную, а не ядерную ДНК, поскольку она присутствует в клетках в большом количестве копий и некоторое ее количество почти всегда можно обнаружить в ископаемом материале. Секвенирование и сравнение в процессе гибридизации молекул ДНК разных видов современных приматов, человека и ископаемых предковых форм дает возможность определить степень их родства и примерное время расхождения соответствующих филогенетических ветвей. Естественно, что оценивать степень родства и давность происхождения можно лишь по накоплению нейтральных и полезных мутаций (изменений в нуклеотидных последовательностях) в геноме, так как вредные мутации быстро элиминируются из генофондов.

Рис. 15.2. Число отличий аминокислотных остатков в молекулах гемоглобина разных видов позвоночных по сравнению с человеком

Расчеты показывают, что при нейтральности мутаций скорость их накопления постоянна только при измерении времени в числе поколений, а не в годах. Так как продолжительность жизни поколений у различных видов различна, то и скорости накопления различий нуклеотидных последовательностей будут более велики у короткоживущих видов по сравнению с долгоживущими. Кроме того, фактическая скорость эволюции может значительно варьировать в различные временные интервалы в различных группах и по разным признакам. В определении применимости методов молекулярной биологии имеет значение возможность возникновения конвергентного сходства молекул, причем вероятность его повышается с увеличением изучаемых временных интервалов. Эволюция генов и белков часто может опережать реальное расхождение популяций, в первую очередь за счет адаптивного генетического полиморфизма. Однако молекулярно-биологические методы применимы для оценки родства и времени дивергенции в качестве приблизительных «молекулярных часов» при сравнении средних скоростей замен нуклеотидов в ДНК в целом и аминокислот во многих белках за длительные интервалы времени. Гибридизация ДНК человека и шимпанзе показала, что момент дивергенции их эволюционных ветвей наступил 6,5-7 млн лет назад (рис. 15.3).

Биомолекулярный подход - лишь один из путей определения эволюционных расстояний, который работает наряду с классическими методами палеонтологии и антропологии, причем в результатах при этом возможны серьезные расхождения. Так, при изучении скелета человека, обнаруженного на территории Эквадора, по данным радиоуглеродного и аминокислотного анализа его возраст оценен в 28 тыс. лет. При использовании же коллагенового анализа возраст того же скелета оказался не более чем 2,5 тыс. лет.

Рис. 15.3. Среднее время дивергенции высших приматов по часам ДНК

Однако между эволюцией структуры генома в виде накопления генных мутаций и морфофизиологической эволюцией часто нет прямой зависимости (рис. 15.4). Это может быть связано с тем, что в формировании практически всех сложных фенотипических признаков принимают участие различные генные системы. Таким образом, скорость эволюции белков у двух разных родственных видов может быть одинакова, а скорость эволюции в целом, оцененная по комплексу фенотипических признаков, при этом оказывается различной. Сравнение аминокислотных последовательностей белков шимпанзе и человека привело к выводу, что около 99% их белков абсолютно идентичны. Из этого следует, что и структурные гены человека и шимпанзе сходны в наибольшей степени. С чем же связаны столь значительные морфофизиологические отличия обоих видов? Можно предполагать, что это зависит от различного распределения белков в клетках организма в процессе развития, что, в свою очередь, определяется различиями программы считывания сходной наследственной информации во времени и пространстве.

Интересно, что вследствие вырожденности генетического кода белки у родственных организмов могут нередко отличаться даже меньше, чем ДНК.

Поскольку изучение хромосомного материала возможно только у ныне живущих организмов, применение цитогенетического метода ограничено современным человеком и человекообразными обезьянами.

Рис. 15.4. Соотношение скорости морфофизиологической (а) и молекулярной (б) эволюции

Дифференциальная окраска хромосом позволяет не только сопоставлять хромосомы разных видов приматов и человека и изучать хромосомный полиморфизм современного человека, но и решать некоторые вопросы эволюции.

Выяснено, что кариотип человекообразных обезьян отличается по числу хромосом от кариотипа человека на одну пару (23 пары хромосом человека и 24 пары шимпанзе). У человека и шимпанзе практически идентичны 13 пар хромосом. Хромосома 2 человека точно соответствует двум соединенным хромосомам шимпанзе, а остальные хромосомы отличаются друг от друга незначительно. Так, хромосома 5 шимпанзе соответствует такой же хромосоме человека, но небольшой ее перицентрический участок инвертирован на 180° по сравнению с человеческой хромосомой. Инверсии такого рода обнаружены в кариотипах человека и шимпанзе еще в восьми хромосомах. Хромосома 9 человека имеет большие размеры по сравнению с соответствующей хромосомой шимпанзе, а хромосома 12 - несколько короче. Таким образом, наибольшие различия генетического материала человека и человекообразных обезьян касаются не структурных генов, а организации хромосом (см. также п. 4.3.2).

Эти данные вместе с указаниями на сходство белков человека, шимпанзе и других человекообразных обезьян свидетельствуют об их значительной эволюционной близости. Применение FISH-метода изучения хромосом позволяет обнаружить очень высокую степень соответствия физико-химических свойств генетического материала человека и его современных ближайших родственников. Существенные отличия обнаружены, однако, в его пространственной организации в ядрах интерфазных клеток. Действительно, различными оказываются точки прикрепления деконденсированных хромосом к внутренней поверхности ядерной мембраны (см. п. 2.4.3.1), их пространственная организация и взаимное расположение хромосом в ядре клетки, что само по себе может проявляться в различиях интенсивности и последовательности реализации сходной генетической информации.

Использование сравнительно-эмбриологического метода при изучении пренатального и раннего постнатального онтогенеза человекообразных обезьян и человека приводит к выводу о том, что эмбриогенез человека характеризуется выраженными признаками неотении: закладки и ранние этапы развития черепа человека и обезьян протекают практически идентично. Позже наблюдается выраженная аллометрия ростовых процессов (см. п. 8.3.4): у обезьян скорость роста элементов лицевого черепа резко опережает увеличение размеров мозгового, в то время как у человека рост его мозгового отдела происходит с существенно большей скоростью по сравнению с лицевым (рис. 15.5). У человека в постнатальном периоде позже зарастают роднички мозгового черепа, в результате чего оказывается возможным интенсивный рост головного мозга и в раннем постнатальном периоде, в то время как у обезьян зарастание родничков и увеличение массы мозга приостанавливается значительно раньше. Вероятно, что указанная неравномерность ростовых процессов в формировании элементов черепа и мозга гоминид и их ближайших родственников обусловлена мутациями системных генов, регулирующих интенсивность клеточной пролиферации и перемещения клеток, и возникла уже на довольно ранних этапах дивергенции высших приматов.

Рис. 15.5. Аллометриче-ский рост черепа в процессе индивидуального развития шимпанзе и человека

Сопоставление кариотипов людей, происходящих из разных популяций, приводит к выводу о полиморфизме хромосом, в первую очередь по размерам гетерохроматиновых участков. Наследуемость индивидуальных вариаций хромосом и их неравномерное распределение в разных популяциях (в частности, расовые различия по размерам длинного плеча Y-хромосомы) делают возможным популяционно-цитогенетический подход в изучении эволюции современного человека.