Биология. Том 2. - Ярыгин В.Н.

Глава 14. Филогенез систем органов хордовых

14.6. Интегрирующие системы

У большинства многоклеточных животных, в том числе и у позвоночных, существует две системы регуляции функций, интегрирующие организм в целостную систему, - нервная и эндокринная. Нервная система осуществляет быстрое реагирование организма на изменения условий среды посредством рефлексов. Эндокринная система с помощью гормонов обеспечивает более медленные, но и более стойкие приспособительные реакции. В связи с тесным взаимодействием обеих регуляторных систем в их филогенезе проявляются тесные динамические координации, а в онтогенезе - эргонтические корреляции.

14.6.1. Центральная нервная система

Нервная система хордовых животных, как и у всех многоклеточных, развивается из эктодермы. Она возникла за счет погружения чувствительных клеток, первоначально лежавших на поверхности тела, под его покровы. Это доказывается и сравнительноанатомическими, и эмбриологическими данными.

Действительно, у наиболее примитивного представителя хордовых - ланцетника - центральная нервная система, состоящая из нервной трубки, сохранила функции органа чувств: среди клеток, лежащих внутри нее, имеются отдельные светочувствительные образования - глазки Гессе. Кроме того, основные дистантные органы чувств - зрения, обоняния и слуха - образуются у всех позвоночных первоначально как выпячивания передней части нервной трубки.

В эмбриогенезе нервная система формируется вначале всегда в виде полосы утолщенной эктодермы на спинной стороне зародыша, которая впячивается под покровы и замыкается в трубку с полостью внутри - невроцелем. У ланцетника это замыкание еще не полное, поэтому нервная трубка выглядит как желобок (рис. 14.40). Передний конец ее расширен. Он гомологичен головному мозгу позвоночных. Большинство клеток нервной трубки ланцетника не являются нервными, они выполняют опорные или рецепторные функции.

У всех позвоночных центральная нервная система - производное нервной трубки, передний конец которой становится головным мозгом, а задний - спинным. Образование головного мозга называют кефализацией. Она связана с усилением двигательной активности позвоночных и необходимостью постоянного анализа раздражений, приходящих из внешней среды, в первую очередь с переднего конца тела. Этот процесс сопровождается также дифференциацией органов чувств, особенно дистантных - обоняния, зрения и слуха. Совместная эволюция органов чувств и головного мозга приводит к возникновению динамических координаций между обонятельными рецепторами и передним мозгом, зрительными - и средним, слуховыми - и задним. Видимо, поэтому головной мозг всех современных позвоночных животных в эмбриогенезе закладывается вначале из трех мозговых пузырей - переднего, среднего и заднего - и только позже дифференцируется на пять отделов. Вероятно, предки позвоночных имели более простой головной мозг, развивающийся на основе трех мозговых пузырей.

Рис. 14.40. Нервная трубка ланцетника: 1 - невроцель; 2 - глазки Гессе

Головной мозг современных взрослых позвоночных всегда состоит из пяти отделов: переднего, промежуточного, среднего, заднего и продолговатого. Внутри головного и спинного мозга расположена общая полость, соответствующая невроцелю. В спинном мозге это спинномозговой канал, а в головном - желудочки мозга. Ткань мозга состоит из серого вещества (скопления нервных клеток) и белого (отростков нервных клеток).

Во всех отделах головного мозга различают мантию, располагающуюся над желудочками, и основание, лежащее под ними. В прогрессивной эволюции головного мозга проявляется постепенное усиление роли его передних отделов и мантии по сравнению с задними и основанием.

У рыб головной мозг в целом невелик. Слабо развит его передний отдел. Передний мозг не разделен на полушария. Крыша его тонкая, состоит только из эпителиальных клеток и не содержит нервной ткани. Основание переднего мозга включает полосатые тела, от него отходят обонятельные доли. Функционально передний мозг является высшим обонятельным центром.

В промежуточном мозге, с которым связаны эпифиз и гипофиз, расположен гипоталамус, центральный орган эндокринной системы. Средний мозг рыб наиболее развит. Он состоит из двух полушарий и служит высшим зрительным центром. Кроме того, он представляет собой высший интегрирующий отдел головного мозга. Задний мозг содержит мозжечок, осуществляющий регуляцию координации движений. Он развит очень хорошо в связи с перемещением рыб в трехмерном пространстве. Продолговатый мозг обеспечивает связь высших отделов головного мозга со спинным и содержит центры дыхания и кровообращения. Головной мозг такого типа, в котором высшим центром интеграции функций является средний мозг, называют ихтиопсидным.

У земноводных головной мозг также ихтиопсидный. Однако передний мозг их имеет большие размеры и разделен на полушария. Крыша его состоит из нервных клеток, отростки которых располагаются на поверхности. Как и у рыб, больших размеров достигает средний мозг, также представляющий собой высший интегрирующий центр и центр зрения. Мозжечок несколько редуцирован в связи с примитивным характером движений.

Условия наземного существования пресмыкающихся требуют более сложной морфофункциональной организации мозга. Передний мозг - наиболее крупный отдел по сравнению с остальными. В нем особенно развиты полосатые тела. К ним переходят функции высшего интегративного центра. На поверхности крыши впервые появляются островки коры очень примитивного строения, ее называют древней - archicortex. Средний мозг теряет значение ведущего отдела, и относительные размеры его сокращаются. Мозжечок сильно развит благодаря сложности и многообразию движений пресмыкающихся. Головной мозг такого типа, в котором ведущий отдел представлен полосатыми телами переднего мозга, называют зауропсидным.

У млекопитающих - маммалийный тип мозга. Для него характерно сильное развитие переднего мозга за счет коры, которая развивается на основе небольшого островка коры пресмыкающихся и становится интегрирующим центром мозга. В ней располагаются высшие центры зрительного, слухового, осязательного, двигательного анализаторов, а также центры высшей нервной деятельности. Кора имеет очень сложное строение и называется новой корой - neocortex. В ней располагаются не только тела нейронов, но и ассоциативные волокна, соединяющие разные ее участки. Характерно также наличие комиссуры между обоими полушариями, в которой располагаются волокна, связывающие их воедино. Промежуточный мозг, как и у других классов, включает гипоталамус, гипофиз и эпифиз. В среднем мозге располагается четверохолмие в виде четырех бугров. Два передних связаны со зрительным анализатором, два задних - со слуховым. Очень хорошо развит мозжечок (рис. 14.41).

По мере усиления функций передних отделов головного мозга в филогенезе спинного мозга наблюдается его продольная дифференцировка с образованием утолщений в области отхождения крупных нервов к конечностям и редукция его заднего конца.

Так, у рыб спинной мозг равномерно тянется вдоль всего тела. Начиная от земноводных, происходит его укорочение сзади. У млекопитающих на заднем конце спинного мозга остается рудимент в виде конечной нити - filum terminate. Нервы, идущие к заднему концу тела, проходят по позвоночному каналу самостоятельно, образуя так называемый конский хвост - cauda equina.

Рис. 14.41. Эволюция головного мозга позвоночных: а - рыба; б - земноводное; в - пресмыкающееся; г - млекопитающее; 1 - обонятельные доли; 2 - передний мозг; 3 - средний мозг; 4 - мозжечок; 5 - продолговатый мозг; 6 - промежуточный мозг

Основные этапы эволюции центральной нервной системы отражаются и в онтогенезе человека. На стадии нейруляции закладывается нервная пластинка, превращающаяся в желобок и затем в трубку. Передний конец трубки образует сначала три мозговых пузыря (рис. 14.42): передний (I), средний (II) и задний (III). Вслед за этим передний пузырь подразделяется на два, дифференцирующихся на передний (1) и промежуточный (2) мозг - telencephalon, diencephalon. Средний мозговой пузырь развивается в средний (3) мозг - mesencephalon, a задний - в задний (4) мозг - metencephalon - и продолговатый (5) мозг - medulla oblongata.

Задний конец спинного мозга редуцируется, превращаясь в терминальную нить. Позже скорости роста спинного мозга и позвоночника оказываются разными, и к моменту рождения конец спинного мозга оказывается на уровне третьего, а у взрослого человека - уже на уровне первого поясничного позвонка.

Головной мозг рано начинает развиваться по пути, характерному для млекопитающих. Первично почти прямая нервная трубка резко изгибается в области будущего продолговатого и среднего мозга. На этом фоне большие полушария переднего мозга растут особенно быстро. В результате головной мозг оказывается расположенным над лицевым черепом. Дифференцировка коры приводит к развитию извилин, борозд и формированию высших сенсорных и двигательных центров, в том числе центров письменной и устной речи и других, характерных только для человека (см. п. 15.3).

Рис. 14.42. Мозговые пузыри в эмбриогенезе мозга человека: а - стадия трех мозговых пузырей; б - стадия пяти мозговых пузырей (остальные пояснения в тексте)

Центральная нервная система столь важна для интеграции индивидуального развития человека, что большинство ее врожденных пороков несовместимы с жизнью. Среди пороков спинного мозга, онтогенетические механизмы которых известны, отметим рахисхиз, или плати-неврию, - отсутствие замыкания нервной трубки (рис. 14.43). Такая аномалия связана с нарушением клеточных перемещений и адгезии в зоне формирования нервной трубки в процессе нейруляции. Аномалия переднего мозга - прозэнцефалия - выражается в нарушении морфогенеза мозга, при котором полушария оказываются неразделенными, а кора - недоразвита. Этот порок формируется на 4-й неделе эмбриогенеза, в момент закладки переднего мозга. Как и предыдущий, он несовместим с жизнью и часто встречается у мертворожденных при различных хромосомных и генных синдромах. Клеточные механизмы формирования этого порока - комплексные нарушения как клеточной пролиферации, так и миграции, дифференцировки и формирования межклеточных контактов, а генетические - в первую очередь нарушение генного баланса.

Нарушения дифференцировки коры - агирия (отсутствие извилин) и олигогирия с пахигирией (малое количество утолщенных извилин) - сопровождаются упрощением гистологического строения коры. У детей с такими пороками выявляются грубая олигофрения и нарушение многих рефлексов. Большинство детей при этом умирают в течение первого года жизни.

Рис. 14.43. Рахисхиз (платиневрия)

14.6.2. Эндокринная система

Эндокринная система наряду с нервной является ведущим аппаратом интеграции многоклеточного организма, обеспечивая гуморальную регуляцию функций органов. Эта регуляция осуществляется гормонами - биологически активными веществами разной химической природы, выделяемыми железами внутренней секреции. Действие гормонов строго специфично: разные гормоны действуют на разные органы, вызывая определенные изменения их функционирования. Железы внутренней секреции не имеют протоков и выделяют гормоны непосредственно в кровь, что облегчает их транспорт к органам-мишеням. Клетки органов-мишеней на своих мембранах имеют специфические рецепторы, с которыми связываются гормоны, вызывая определенные изменения их метаболизма. Гуморальная регуляция эволюционно возникла значительно раньше нервной, поскольку она более проста и не требует развития таких сложных структур, как нервная система. Действительно, даже у самых примитивных многоклеточных животных - губок - некоторые клетки способны к секреции таких известных медиаторов нервной системы и гормонов более высокоорганизованных форм животного мира, как серотонин и ацетилхолин. У губок они служат для согласования деятельности отдельных частей тела. В организме иглокожих и брюхоногих моллюсков, а также низших хордовых обнаруживается инсулин. У большинства исследованных беспозвоночных найдены также стероидные гормоны, секретирующиеся клетками половых желез и ряда других органов. Вероятно, их происхождение очень древнее, так как они обнаружены даже у грибов и у многих видов растений.

Обсуждая вопрос о филогенезе эндокринной системы хордовых, необходимо рассмотреть происхождение и эволюцию как гормонов, так и самих желез внутренней секреции.

14.6.2.1. Гормоны

Химическая структура гормонов многообразна. Это могут быть белки (инсулин, пептидные нейрогормоны), стероиды (половые гормоны), продукты метаболизма отдельных аминокислот (тироксин, адреналин).

Они могут иметь и другое строение. Это свидетельствует о том, что гормоны разнообразны и по происхождению. Главное, что их объединяет, - способность специфически изменять клеточный метаболизм при контакте с цитоплазматической мембраной.

Предполагают, что уже древние одноклеточные организмы использовали биологически активные вещества для межклеточных коммуникаций. Некоторые вещества такого рода, обладающие регуляторными функциями, могли действовать как на отдельные клетки простейших, так позже и на клетки многоклеточных организмов. Впоследствии они и стали выполнять функции гормонов. Интересно, что в прогрессивной эволюции гуморальной регуляции структура самих гормонов может и не меняться. Доказательство этого - обнаружение таких известных гормонов, как адреналин, норадреналин и некоторые другие, в клетках простейших и низших растений, где они выполняют функции регуляторов клеточного деления, движения ресничек и вакуолей.

В эмбриогенезе многоклеточных ряд гормонов выявляется уже в первые часы и дни развития. В процессе дробления они регулируют течение клеточного цикла. Позже - перемещения клеток и образование межклеточных контактов, действуя либо внутри клеток, их продуцирующих, либо на близлежащие клетки. Гормоны приобретают свойства дистантных регуляторов в филогенезе только у трехслойных животных, а в онтогенезе многоклеточных - соответственно на стадии первичного органогенеза.

При неизменности химической структуры функции гормонов могут нередко изменяться. Так, гормон пролактин, выделяющийся у млекопитающих, в том числе человека, гипофизом и регулирующий секрецию молока млечными железами, обнаружен также у рыб, земноводных и птиц. У первых он регулирует выделение кожными железами слизи, которой питаются мальки, у вторых - образование оболочек икринок в яйцеводах, у третьих - некоторые элементы брачного поведения, а также выделение у кормящих родителей «зобного молочка». Как видно из этого примера, эволюция действия гормонов может быть канализированной выполнением одной и той же функции в самом широком смысле. Действительно, все перечисленные функции пролактина у животных, находящихся на разных уровнях организации, имеют отношение к обеспечению успешности размножения.

Функции других гормонов, например, адреналина, могут в филогенетическом ряду тех же позвоночных практически не меняться, обеспечивая у всех регуляцию в первую очередь энергетического обмена.

При этом часто гормоны продолжают выполнять те функции, которые первично проявлялись еще у одноклеточных и низших многоклеточных животных.

Так, адреналин в организме млекопитающих, кроме регуляции энергетического обмена, артериального давления и работы сердца, замедляет прохождение клеток по клеточному циклу и вступление их в митоз. Функция регуляции размножения у одноклеточных была исторически, по- видимому, главной. Из главной эта функция у многоклеточных животных превратилась во второстепенную. Таким образом, на филогенез гормонов, так же, как и на эволюцию органов, распространяются основные закономерности макроэволюционных преобразований биологических структур (см. гл. 13).

14.6.2.2. Железы внутренней секреции

Железы внутренней секреции, как и гормоны, выделяемые ими, имеют разное происхождение, что важно для изучения их эволюции.

Некоторые эндокринные железы связаны по происхождению с эпителиальной выстилкой глотки. К ним относятся щитовидная и паращитовидная железы. Эпифиз развивается как вырост мозга; гипофиз, надпочечники и поджелудочная железа имеют сложное происхождение.

Среди хордовых только у бесчерепных эндокринная система существует в виде отдельных клеток и клеточных комплексов, которые находятся в разных отделах тела, объединенных друг с другом за счет гуморального взаимодействия. У позвоночных в основании промежуточного мозга развивается гипоталамус - нейросекреторное образование, осуществляющее связь между двумя системами интеграции организма (нервной и эндокринной) в единое целое. Вместе с гипофизом гипоталамус образует единую гипоталамо-гипофизарную систему.

Эволюционный предшественник гипоталамуса - так называемый инфундибулярный вырост ланцетника, состоящий из нейросекреторных клеток и находящийся на вентральной стороне переднего конца нервной трубки.

Начиная с рыб, гипоталамус дифференцируется на многочисленные ядра, клетки которых с помощью отростков контактируют как с нейронами мозга, так и с клетками гипофиза.

Нейросекреторные клетки гипоталамуса выделяют две основные группы гормонов: пептидные и моноаминовые.

Первые - гормоны, влияющие на функции внутренних органов - вазопрессин, регулирующий артериальное давление, окситоцин, действующий на мускулатуру матки, и др. Вторая группа гормонов (дофамин, норадреналин, серотонин) регулирует деятельность передней доли гипофиза. Их действие стимулирует или подавляет секрецию гормонов соответствующими гипофизарными клетками.

Подробнее остановимся на эволюции гипофиза. Эта железа состоит из трех долей: передней (аденогипофиза), средней (промежуточной) и задней (нейрогипофиза). Гипофиз соединен с гипоталамусом его выростом - воронкой, через которую проходят отростки нейронов гипоталамуса и кровеносные сосуды, обеспечивающие их гуморальное взаимодействие. Доли гипофиза имеют разное происхождение. Передняя доля развивается из выпячивания эктодермального эпителия крыши ротовой полости, так называемого кармана Ратке, который растет в сторону промежуточного мозга. Задняя доля развивается из задней части воронки. Клетки, входящие в ее состав, по происхождению являются глиальными. Промежуточная доля - производная от передней (рис. 14.44).

У хрящевых рыб во взрослом состоянии сохраняется первоначальная связь передней доли гипофиза с эпителием ротовой полости. За счет ее задней части формируется также средняя доля. Обе доли вырабатывают гонадотропные гормоны. У костных рыб и личинок земноводных имеются передняя и промежуточная доли, а у взрослых амфибий, переходящих к наземному существованию, появляется также задняя, регулирующая водный обмен. Средняя доля у них перестает выделять гонадотропный гормон, но вырабатывает пролактин.

Рис. 14.44. Развитие гипофиза у человека: а - сагиттальный срез 4-недельного зародыша; б - объединение зачатков гипофиза из стенки глотки и основания мозга; в - формирование трех долей гипофиза на 8-й неделе развития; г - сформированный гипофиз: 1 - крыша ротовой полости; 2 - основание мозга; 3 - выпячивание основания мозга (задняя доля гипофиза); 4 - карман Ратке (промежуточная и передняя доли гипофиза); 5 - аномалия развития (добавочные дольки передней доли в стенке глотки и внутри клиновидной кости, оставшиеся в области выпячивания кармана Ратке)

В связи с наземным образом жизни пресмыкающихся и млекопитающих у них наиболее прогрессивно развивается задняя доля гипофиза, что связано с интенсификацией водного обмена.

Передняя доля вырабатывает соматотропный гормон (гормон роста) и ряд гормонов, регулирующих функции других желез внутренней секреции, а средняя - пролактин и некоторые другие. При этом усиливается дифференцировка и интенсифицируются функции ядер гипоталамуса, находящихся в функциональной связи со всеми долями гипофиза.

У человека в эмбриогенезе развитие гипофиза соответствует основным этапам его эволюции. Очень часто, в 30-40%, у нормальных людей под слизистой оболочкой крыши глотки, в основании клиновидной кости, обнаруживается группа клеток длиной 5-6 мм и шириной 0,5-1 мм, по структуре и функциям соответствующая передней доле гипофиза. Это результат нарушения перемещения клеток при закладке гипофиза в эктодерме ротовой полости в области турецкого седла. Эту аномалию называют эктопией аденогипофиза, она не сопровождается патологическими проявлениями. Более опасно сохранение полости в области кармана Ратке - киста кармана Ратке. Она располагается между передней и промежуточной долями, содержит слизь и в ряде случаев имеет тенденцию к росту и даже к переходу в злокачественное новообразование. Растущие кисты сдавливают гипофиз и вызывают его гипофункцию. Кроме того, возможно сдавление области hiasma opticum, что проявляется в нарастающем сужении полей зрения. Больные нуждаются в оперативном вмешательстве.

Эпифиз, или верхний мозговой придаток, - эндокринная железа, связанная по происхождению с органом зрения. Его строение у низших водных позвоночных сходно со строением примитивного глаза. У рыб, земноводных и пресмыкающихся это фоторецепторный орган, одновременно выделяющий гормон мелатонин, регулирующий суточную активность животных и контролирующий синтез и разрушение темного пигмента меланина. У млекопитающих фоторецепторная функция эпифиза исчезает, однако он сохраняет тесную функциональную связь с сетчаткой глаза и получает от нее информацию как об освещенности, так и о продолжительности дня и ночи. От этих факторов зависит секреция мелатонина эпифизом. Поэтому функция регуляции суточной и годичной ритмической активности этой железой у млекопитающих, в том числе человека, в полной мере сохраняется.

Щитовидная железа, гормон которой тироксин регулирует энергетический обмен, среди хордовых как компактный орган впервые появляется у рыб. Однако уже у ланцетника отдельные тироксин-синтезирующие клетки обнаруживаются в эндостиле - желобке на вентральной стороне глотки. Щитовидная железа рыб закладывается также в виде желобка на вентральной стороне глотки между 1-й и 2-й жаберными щелями в области зачатка основания языка. Позже этот клеточный материал погружается под слизистую оболочку и формирует фолликулы, характерные для щитовидной железы. У других позвоночных железа закладывается так же, как у рыб, но затем она перемещается в область подъязычной кости (у земноводных) или в шейную область (у пресмыкающихся и млекопитающих).

У человека в эмбриогенезе щитовидной железы происходит рекапитуляция предковых состояний. Гетеротопия ее осуществляется посредством миграции клеток из эпителия корня языка в область расположения щитовидного хряща гортани. При этом образуется клеточный тяж, полый внутри, называющийся щитоязычным протоком - canalis thyreoglossus. При нормальном развитии этот проток полностью редуцируется, рудиментом его является слепое отверстие foramen caecum в корне языка.

Свидетельство эмбрионального перемещения железы - и расположение верхней щитовидной артерии a. thyreoidea superior, которая, начинаясь от общей сонной артерии, резко поворачивает вниз и входит в железистую ткань. На ранних этапах эмбрионального развития эта артерия направляется вверх к зачатку щитовидной железы, а затем меняет свое направление вместе с его перемещением книзу.

Персистирование участков щитоязычного протока в постнатальном периоде сопровождается накоплением в них жидкости и образованием срединных кист шеи, которые могут располагаться в любом месте от корня языка до верхней границы щитовидного хряща. Иногда кисты загнаиваются и прорываются с образованием срединных свищей шеи. Не менее известны такие пороки развития, как эктопия щитовидной железы, которая может развиться в результате нарушения клеточной миграции (рис. 14.45). Встречается в качестве аномалии расположение ткани щитовидной железы в области корня языка, а также существенно выше места ее дефинитивного положения - в области подъязычной кости или несколько ниже ее - так называемая переднешейная локализация.

Рис. 14.45. Аномалии щитовидной железы: 1 - нормальное расположение железы; 2 - место эмбриональной закладки железы; 3 - варианты аномального расположения железы; показано направление перемещения зачатка щитовидной железы в онтогенезе

Из эпителия глотки в области III-V жаберных карманов у позвоночных развиваются мелкие эндокринные образования, связанные по месту окончательного положения со щитовидной железой. Это паращитовидные железы и ультимобранхиальные тельца. Первые, выделяя гормон паратиреоидин, повышающий содержание ионов кальция в крови и уменьшающий их количество в костях, развиваются как самостоятельные железы только у наземных позвоночных, а у земноводных - лишь после метаморфоза. Клетки вторых выделяют кальцитонин, антагонист паратиреоидина. Таким образом, паращитовидные железы и ультимобранхиальные тельца регулируют кальциевый обмен. Значение их наиболее велико у наземных позвоночных. В филогенетическом ряду позвоночных они постепенно перемещаются из глоточной области в сторону щитовидной железы, а у млекопитающих даже срастаются с ней. Паращитовидные железы еще сохраняют самостоятельность, а клетки ультимобранхиальных телец мигрируют между фолликулами щитовидной железы и сохраняются под названием парафолликулярных клеток. Таким образом, на примере щитовидной, паращитовидных желез и ультимобранхиальных телец видна интеграция железистых структур в сложное надорганное образование, выполняющее целый комплекс взаимосвязанных функций.

У человека известны аномалии расположения паращитовидных желез, связанные с нарушением их гетеротопий.

Надпочечники позвоночных имеют двойственное происхождение. У рыб и земноводных ткани, соответствующие мозговому и корковому веществам этих желез, расположены отдельно друг от друга. Зачатки мозгового вещества связаны по происхождению с симпатическими нервными узлами и расположены метамерно. Зачатки коркового вещества развиваются из утолщений эпителия брюшины. У наземных позвоночных мозговое и корковое вещества объединяются в компактные эндокринные железы, имеющие сложное гистологическое строение. У млекопитающих они прилежат к переднему концу почек. Мозговое вещество выделяет в основном адреналин - регулятор кровообращения и энергетического обмена, а корковое вещество - разнообразные стероидные гормоны, влияющие на минеральный и углеводный обмены, функции почек, половых желез и формирование ряда вторичных половых признаков.